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Abstract. The critical behaviour of the spin-4 Ising model with a transverse field at zero 
temperature in triangular and square lattices is investigated through a finite-size rescaling 
transformation. This technique enables the critical properties of infinite systems to be 
calculated from the scaling properties of systems of finite size, in a generalisation of the 
so-called phenomenological renormalisation group. The critical field and correlation length 
exponent calculated using systems of fairly small sizes have reasonable accuracy, but 
calculations on larger clusters are limited by computer time and storage. 

1. Introduction 

The renormalisation group (RG) ideas (Wilson and Kogut 1974) have contributed a 
great deal to our understanding of critical phenomena. In particular, they have 
provided us with a formal interpretation of universality and also with a means of 
calculating critical exponents. 

The great flexibility in defining an RG transformation in real space (Niemeijer and 
van Leeuwen 1976, Wallace and Zia 1978) allows several approximation schemes to be 
set up. For classical (i.e. Ising-like) spins even the simplest approximations are able to 
elucidate several aspects of pure (Niemeijer and van Leeuwen 1973, Kadanoff and 
Houghton 1975, Barber 1975) as well as of diluted systems (Young and Stinchcombe 
1976, Yeomans and Stinchcombe 1978, 1979). As these simple approximations are 
improved, one usually faces the uncontrolled appearance of coupling constants of 
longer range than the ones one started with. These difficulties are worse when dealing 
with quantum spins, i.e. systems described by Hamiltonians containing non-commuting 
terms, where couplings involving other spin components are also generated under an 
RG transformation (dos Santos 1980). These are usually dealt with by referring the 
transformation to a certain basis (Friedman 1976, 1978, Subbarao 1976, Um 1977, 
1978, dos Santos 1980, 1981). 

A completely different approach for classical spins was proposed by Nightingale 
(1976,1977), in which the RG transformation is defined at a macroscopic level, through 
the scaling of the correlation length. As there is no explicit relationship between site 
and cell spins, this scheme is free from the proliferation of coupling constants found in 
standard RG approaches. Another feature of this scheme is the high accuracy of the 
results obtained for classical spins (Nightingale 1976, 1977, Sneddon 1978, 1979, 
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Nightingale and Blote 1980, Blote et a1 1981). This method was also successfully 
applied to a quantum model through its classical equivalent (Sneddon and Stinchcombe 
1979) and also to the percolation (Derrida and Vannimenus 1980) and self-avoiding 
walk (Derrida 1981) problems. 

The above method relies on the possibility of computing the correlation length as a 
function of the coupling constants for semi-infinite systems (i.e. infinite strips of finite 
width) through transfer matrix (Domb 1960) techniques. Although transfer matrices 
can be defined for some quantum systems (Denbigh 1978), the calculation of the 
correlation length is not as straightforward as for classical spins (Domb 1960). 

This phenomenological approach (Nightingale 1976, 1977) has been reinterpreted 
at a more formal level by dos Santos and Sneddon (1981), enabling a transformation to 
be derived from the scaling properties of not just the correlation length but of any 
thermodynamic quantity such as susceptibility, specific heat, etc, calculated for systems 
of finite size. This approach is equally applicable to classical and quantum spins. It is 
worth pointing out that due to the absence both of multi-dimensional flows in the 
parameter space and of a definite relationship between cell and site spins, this 
transformation is quite different from the usual RG transformations, as well as being a 
finite-size transformation. To make these distinctions it will here be referred to as a 
finite-size rescaling transformation (FSRT). These ideas were tested in the calculation of 
the critical properties of the one-dimensional transverse Ising model at zero tempera- 
ture, for which exact results are known (Pfeuty 1970, Young 1975, Hertz 1976), and 
yielded excellent estimates for the critical field and exponents (dos Santos and Sneddon 
1981). 

In the present work we apply the FSRT approach to the two-dimensional transverse 
Ising model   TIM[^], d = 2) (de Gennes 1963, Stinchcombe 1973) at zero temperature, 
described by the Hamiltonian (in units of the exchange coupling) 

%=- - h  C U S  
i 

where g and h are the transverse and longitudinal fields respectively, U' and U' are 
Pauli matrices and the second sum runs over nearest-neighbour sites on a triangular or 
square lattice. As was first suggested (Elliott eta1 1970) and then proved (Pfeuty 1970, 
Young 1975, Hertz 1976, Suzuki 1976), the critical behaviour of t h e T ~ ~ [ d ]  (with h = 0) 
at finite temperatures is the same as that of the d-dimensional Ising model, but at zero 
temperature there is a phase transition at a critical field g,, with the same critical 
exponents (defined in terms of Ig - g,]) as the (d + 1)-dimensional Ising model. 

The plan of this paper is as follows: in § 2 we briefly review the method (dos Santos 
and Sneddon 1981) and discuss the quantities used to define the FSRT. The results for 
the triangular and square lattices are presented in § §  3 and 4. In § 5 we present our 
conclusions. 

2. The finite-size rescaling transformation approach 

2.1. The transformation 

The FSRT approach is closely related to the RG, in the sense that we define a recursion 
relation for the (n, n/b) scaling 

(2.1) g' = Rb (n ; g )  
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between the coupling constants g and g' for two systems of finite sizes n and nlb,  
respectively. However, instead of explicitly removing some of the degrees of freedom 
of the system, the transformation (2.1) is defined implicitly by (dos Santos and Sneddon 
1981) 

Xn/b ( g ' )  = b-'X, (g) (2.2) 

where X,,, is an intensive quantity (such as the susceptibility, specific heat, correlation 
length, etc) calculated for the system of finite size m, and p is a constant to be 
determined. 

As in standard RG schemes (Wilson and Kogut 1974, Wallace and Zia 1978), we 
search for a fixed point g: ( p )  satisfying 

g : ( p ) = R b ( n ;  g : ( p ) )  (2.3) 

around which the linearised recursion relation yields an eigenvalue 

The connection with the actual critical behaviour of the infinite system is established 
from the assumption that the limit 

lim g: ( p )  = g" 
n+m 

(2.5) 

exists and is independent of p .  It then follows that (dos Santos and Sneddon 1981) 

n-w lim h b ( m ; p ) = h b = b Y  (2.6) 

for some y independent of b, and that 

has a power-law singularity 

X ( g )  - lg - g X "  (2.8) 
defining the critical exponent x, with g, = g". Finally, the parameter p is found to be 
(dos Santos and Sneddon 1981) 

(2.9) 

where v is the correlation length exponent. 
As the thermodynamic limit ( n  + 00) is usually computationally inaccessible, fixed 

points and eigenvalues obtained for systems of finite sizes will depend on p ,  but as the 
sizes of the systems considered are increased the results should improve. In practical 
applications we must calculate p ,  which can be done in several ways as discussed below. 

p = yx = x / v  

2.2. Adjust ing the parameter p 

The simplest situation is when p is known. When the correlation length for semi-infinite 
systems is used as the quantity X ,  we have x = v, so that p = 1. Also, for quantum 
models at zero temperature in which the longest time scale is given by the inverse of the 
energy gap between the two lowest states, we have p = -2, where z is the dynamic 
critical exponent (Hohenberg and Halperin 1977). In particular, for the  TIM[^] at zero 
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temperature we have the exact result z = 1 (Young 1975, Hertz 1976, Sneddon and 
Stinchcombe 1979). Another special situation is when x / u  is known either from series 
expansions or exactly. 

The more common situation is when no information about p is available. If 
computations with three systems of finite size ( n l >  n2 > n3) can be performed, we can 
determine two curves g : , ( p )  and g & ( p )  from equation (2.3) with bl = n l / n 2  and 
b2 = n 2 / n 3 ,  respectively. The parameter p is then chosen from the intersection of these 
two curves, artificially reproducing the very large n limit in which the estimates should 
be independent of p .  The corresponding exponents vnl and vnz will, in general, be 
different, with unl closer to the limiting value than un2. This approach was applied to the 
 TIM[^] at zero temperature and yielded estimates for the critical field and correlation 
length exponents less than 1 '/o of the exact values (dos Santos and Sneddon 1981). 

When computer time or storage prevents calculations being performed on more 
than two systems with different sizes we can use two different quantities X and V. (As 
an exponent v # x is associated with V, we must determine a second parameter q = v/u, 
in addition t o p  = x / v ) .  The recursion relation (2.2) can then be solved separately for X 
and V, giving the 'fixed curves' g % , n ( p )  and g$,n(q) ,  respectively. Also, with these we 
can calculate the 'eigenvalue curves' Ab,X(n ,  p )  and Ab,"(n,  4). The constants q and p 
are then determined by demanding 

g%,n ( P I  = g$,n ( q ) ,  A b , X ( n ,  p )  =Ab ,V(n ,  p ) *  (2.10) 

This procedure was tested for the  TIM[^] at T = 0 (dos Santos 1980) and in spite of a 
rather poor accuracy for g*, p and q, it yielded extremely accurate results for v (less than 
0.1% of the exact value). 

Other methods of choosing p have been tested (dos Santos 1980), but the ones 
above turned out to be the most reliable, and will be used in the remainder of this paper. 

2.3. Quantities used for the  TIM[^] at T= 0 

Within the present approach, the limiting (i.e. n + 00) critical behaviour of the TIM[2] at 
zero temperature can then be inferred from quantities calculated from the lowest 
eigenvalues of the Hamiltonian (1.1) for systems with finite size n. Indeed, denoting the 
two lowest eigenvalues of (1.1) by Eo,,(g, h )  and EL,,*(g, h )  ( I E O , ~ ~  > lE1,nl) we can 
calculate the energy gap 

A n ( g )  =El,n(g, O)-Eo,n(g,  01, (2.11) 

the (longitudinal) zero-field susceptibility 

where N is the total number of spins, and the 'specific heat' 

(2.12) 

(2.13) 

The existence of a phase transition in the thermodynamic limit is associated with a 
non-analytic behaviour of these quantities at g, (Pfeuty 1970, Pfeuty and Elliott 1971, 
Young 1975, Hertz 1976, Suzuki 1976) described by power laws 

(2.14) A k )  - Ig - g c r ,  
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(2.15) 

(2.16) 

where the critical exponents s, y and a are independent of lattice structures with the 
same spatial dimensionalities. 

The gap exponent s is related to the dynamic critical exponent z (Hohenberg and 
Halperin 1977) through z = s / v ,  where v is the correlation length exponent defined by 

(2.17) 

so that s = v for the  TIM[^] at zero temperature, since z = 1 (Young 1975, Hertz 1976, 
Sneddon and Stinchcombe 1979). From ground-state perturbation expansions (Pfeuty 
and Elliott 1971, Yanase et a1 1976) for the  TIM[^] at zero temperature we have 
y -- 1.25, v -- 0.63 and a = 0.1 1. 

As for two-dimensional lattices the total number of spins grows roughly as n 2 ,  
numerical calculations are very lengthy. Even with the aid of group theory (Boardman 
et a1 1973), we cannot diagonalise the Hamiltonian (1.1) for n z 5 and n 2 4  for the 
triangular and square lattices, respectively, within acceptable computer times. This is 
particularly unfortunate for the square lattice calculations, because it means we cannot 
handle three square clusters of different sizes, but only rectangular clusters, as discussed 
in Q 4 .  

5 ( g )  - Ig - gcl-" 

3. Results for the triangular lattice 

3.1. Finite-size scaling and the 'specific heat' at zero temperature 

Before we proceed to use the quantities above within the FSRT approach, it is instructive 
to examine the trend of these quantities as the sizes of the systems increase. 

If we calculate A,(g),  X , ( g )  and C,,(g) for the triangular clusters in figure 1, we note 
that while A,, and ,yn are monotonic functions of g, C,(g) displays maxima (or 
rounded-off singularities) at gc(n)  as shown in figure 2. In this case some of the critical 
properties can be estimated from the finite-size scaling theory developed by Fisher and 

n = 2  

n : 4  
n= 3 

Figure 1. Triangular clusters of finite size n, where the spins are represented by open circles. 
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0 2 4 6 
9 

Figure 2. ‘Specific heat’ at zero temperature as a function of the transverse field g calculated 
for the triangular clusters of figure 1. 

co-workers (Fisher 1971), according to which 

c,(g)“n“l”Qrn””(g-gc(n))l  (3.1) 

where a is the same exponent as in equation (2.16), v is the correlation length exponent 
characterising the bulk (i.e. n +CO) behaviour and Q ( w )  is a scaling function of the 
variable w = n’/”(g -g,(n)).  (Strictly speaking, the above ansatz is only valid for very 
large n and for g near the ‘pseudocritical’ coupling g,(n).) 

As limn-tw gc(n)  = g, (Fisher 1971), we can have a crude estimate of g, from a 
quadratic extrapolation to n + a. This yields g, = 4.5, which should be compared with 
the series result g, = 4.77 (Yanase et a1 1976). Also, the ratio cy/u can be estimated 
from a log-log plot of C,[gc(n)] as a function of n, according to equation (3.1): 

(3.2) 

Furthermore, the scaling law 

2/v = a / v + d *  (3.3) 

with d* = d + 1 = 3 for the TIM[2] at zero temperature (Pfeuty and Elliott 1971, Young 
1975, Hertz 1976, Suzuki 1976) provides us with an estimate of Y, once a/v is given. In 
table 1 we show successive estimates (alv), and v, calculated from (3.2) and (3.3), 
respectively, together with the series results of Yanase (1977). 

In spite of these rather encouraging results, the ‘specific heat’ at zero temperature 
yields meaningless results within a FSRT approach with small clusters. In fact, since 

Table 1. Successive estimates of a / v  and v as given by equations (3.2) and (3.3), 
respectively, for the triangular clusters in figure 1, together with the series results (Yanase 
1977). 

3 0.55 0.56 
4 0.38 0.59 

Series 0.194 0.64 
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b-"/" - 1, a non-trivial fixed point is roughly where two successive plots of C,(g) 
intersect. However, figure 2 shows that for the three simplest triangular clusters this 
point would correspond to a negative eigenvalue because the slopes (dC,/dg)Ig*(,,) have 
opposite signs. 

3.2. FSRT results and discussion 

As we can calculate both A,(g) and ,y,(g) for the three clusters in figure 1, we can use 
two successive scalings to determine p as in § 2. In order to test the overall accuracy of 
the method, we also calculate the critical properties of the  TIM[^] using the energy gap 
with p = s / v  = -1 (Young 1975, Hertz 1976) and the susceptibility with p = y / v  = 
1.944 (Yanase et a1 1976). These results are shown in table 2, together with other RG 

estimates. 

Table 2. Estimates of the critical field (g*) and the correlation length exponent ( v )  for the 
TIM at zero temperatures on a triangular lattice, calculated through the scaling of the energy 
gap (A)  and the susceptibility (x). Other RG results are also shown. 

Scaling g* v Remarks 
~~ ~ 

(3,2) 3.09 1.02 
A (4,3) 3.74 0.93 

(4, 3); (3,2) 3.28 0.72 
(3,2) 2.95 0.74 
(473) 3.62 0.71 

Other RG 3.43 0.92 
results 4.73 0.95 

Series 4.77 0.64 

p taken to be -1 (Young 1975, Hertz 1976, 
Sneddon and Stinchcombe 1979) 
p (calculated) = -1.37 
p = y / v  taken to be 1.94 
from series (Yanase et al 1976) 

Perturbative RG (Friedman 1976) 
Truncated basis states (Penson et al 1979) 

(Yanase 1977) 

Unfortunately, the calculations with the susceptibility and two successive scalings 
yielded very inaccurate values for g* and p .  This reflects the fact that the functions 
g: ( p )  (see 9 2) obtained from (3 ,2)  and (4, 3) scalings with the susceptibility do not vary 
much over a wide range of values of p .  If calculations with n = 5 could be performed one 
could possibly obtain very good results in this case. 

Nevertheless, the present method is able to give overall better estimates for v than 
other RG schemes, although estimates for g" are no better. 

4. Results for the square lattice 

4.1. Square clusters 

As mentioned at the end of § 2, we cannot obtain the eigenvalues of the Hamiltonian 
(1.1) for a cluster with n = 4 (N = 16) within acceptable computer times. Thus, if we 
only consider square clusters, we cannot calculate p from two successive scalings, and 
we have to use the energy gap and the susceptibility simultaneously. 

These two quantities were calculated for the two square clusters in figure 3, where 
periodic boundary conditions (PBC) were imposed for two reasons. Firstly, for a square 
cluster with PBC the symmetry group is now the space group, instead of only the point 
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15.235 
f i  .240 

Figure 3. Clusters used in calculations on the square lattice, where the spins are represented 
by open circles. < and f i  are the effective sizes calculated from simple and quadratic 
harmonic means, respectively. 

group D4. In this way the Hamiltonian matrix is cast in block form with smaller blocks 
than in the case of free ends. Secondly, quantities like the energy gap, susceptibility, 
specific heat, etc, calculated for systems of finite size n, converge faster to their large-n 
limit when PBC are imposed than for free ends (Fisher 1971, dos Santos 1980). The 
reason for this probably lies in the fact that a system with PBC has the space group as the 
symmetry group, as does the infinite lattice. 

In table 3 we show the FSRT results for the  TIM[^] at zero temperature on a square 
lattice, together with series (Pfeuty and Elliott 1971) and other RG results. The first two 
rows show the results obtained withp taken from other sources: p = - s / v  = -1 (Young 
1975, Hertz 1976) and p = y / v  = 1.94 (Pfeuty and Elliott 1971), respectively. The 
third row shows the results obtained using A and x simultaneously where, as happened 
for the linear chain (dos Santos 1980), Y is of satisfactory accuracy, but not g* ,  In this 

Table 3. Estimates of the critical field ( g * )  and of the correlation length exponent (U) for the 
TIM at zero temperature on a square lattice calculated through the (3, 2) scaling of the 
energy gap (A) and the susceptibility (x) using only the square clusters of figure 3, with 
periodic boundary conditions. Other RG results are also shown. 

Quantity used g* V Remarks 

A 3.16 0.80 p taken to be -1 (Young 1975, Hertz 1976, 

X 3.18 0.66 p taken to be 1.944 (Pfeuty and Elliott 1971) 
A >  x 2.42 0.52 s / v  (calculated) = 2 . 5 ;  y / v  (calc) = 4.2 

Series results 3.04 0.63 (Pfeuty and Elliott 1971) 

Other RG 3.09 0.72 Cluster approximation (Friedman 1976) 
results 2.63 1.1 Truncated basis states (Penson et a/  1979) 

Sneddon and Stinchcombe 1979) 

1.55 0.50 Cluster decimation (dos Santos 1981) 
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case s / u  = 2.5 and y / u  = 4.2, which are very poor compared with the values quoted 
above. 

4.2. Rectangular clusters 

An alternative approach, which allows us to use two successive scalings, consists in using 
the rectangular clusters in figure 3. The difficulty in this case, however, lies in a rather 
loose definition of the effective size n. 

Within the context of finite-size scaling, Fisher (1971) pointed out that the effective 
size of a d-dimensional hypercubic system of volume v = n l  X n2 X . . . X nd (in units of 
(lattice spacing)d) can be given either as a simple harmonic mean 

d 
1 / n l + l / n 2 + .  . . + l / n d  

n’= 

or by a quadratic harmonic mean 

(4.1) 

Although the difference between n’ and should be immaterial for very large 
systems, this is not the case for systems of fairly small sizes, such as the ones considered 
in this work. This effect can be assessed through a finite-size scaling ansatz for the 
energy gap similar to (3.1), 

A , ( g ) ~ n - l R ( n ” ” ( g - g , ) ) ,  (4.3) 

where we should note the appearance of the unshifted coupling ( g  - g,) (Fisher 1971). 
While calculations for the one-dimensional model (Hamer and Barber 1981, dos Santos 
and Stinchcombe 1981) indicated that A,(g,) -$ l / n  monotonically as n increases from 
2, this monotonic behaviour is only verified for the clusters in figure 3 (using the series 
value g ,  = 3.04 (Pfeuty and Elliott 1971)) if the quadratic harmonic mean (4.2) is used. 
For this reason, in FSRT calculations we shall adopt the definition (4.2) for the effective 
size of the rectangular clusters. 

The results of FSRT calculations using the energy gap and the clusters in figure 3 are 
shown in table 4. Although the results oscillate around the series estimates (Pfeuty and 
Elliott 1971), the values of g” and p are usually more accurate than those using A and ,y 
simultanously (cf table 3). Also, this method provides us with reasonable estimates for 
U ,  especially if we consider an average of the two values obtained when two successive 
scalings are used simultaneously. 

It is worth stressing that the oscillation of the results appears to be entirely due to the 
loose definition of the effective size, since it was not present in the calculations for the 
linear chain (dos Santos and Sneddon 1981). Also, these oscillations are worse when 
the simple harmonic definition is used. 

5. Conclusion 

The critical behaviour of the Ising model with a transverse field at zero temperature on 
both square and triangular lattices was investigated by means of a finite-size rescaling 
transformation. 
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Table 4. Estimates of the critical point g*, the constant p and the correlation length 
exponent v using the energy gap and the finite systems of figure 3 with the quadratic 
harmonic definition of the effective size. When two successive scalings are used we show the 
two corresponding estimates of v. 

Scaling used g* P V 

(2.35,2) 
(2.53, 2.35) 
(3, 2.53) 

(2.53, 2.35) 
(2.35,2) 
(3, 2.53) 
(2.53, 2.35) 

3.21 -1t 0.77 
3.15 - I t  0.69 
3.14 - I f  0.98 

3.03 

3.17 

0.55 
0.69 -1.19 

1.00 
0.63 -0.965 

Series (Pfeuty and Elliott 1971) 3.04 - l ?  0.63 

t Young (1975), Hertz (1976), Sneddon and Stinchcombe (1979). 

Unlike the one-dimensional case, numerical calculations are very involved already 
for the smallest clusters. Although the adjustable parameter of the FSRT can still be 
determined, the results obtained are not as accurate as those for the linear chain. 
Nevertheless, the overall accuracy is still comparable to other RG schemes. If fast 
numerical methods, like Monte Carlo techniques, are used to calculate the macroscopic 
quantities, it is very likely that the present approach will yield extremely accurate 
results. 
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